

Crossing Forensic Borders
CLHC kick-off event
2 December 2020

Going beyond detection and identification in forensic explosives investigations

Karlijn Bezemer k.bezemer@nfi.nl

Explosives incidents

Explosives incidents

ATM attacks

NOS NIEUWS . BINNENLAND . ECONOMIE . 28-11-2019, 21:42

'Plofkraakschade is enorm, en veel ondernemers draaien er zelf voor op'

'Damage caused by ATM
Raids is enormous and
many entrepreneurs have
to face the costs
themselves.'

ATM attacks

Trend in NL: ATM attacks and Handgrenades

Forensic explosives casework in the Netherlands

Chemical analysis

Beyond detection...

Go beyond detection and chemical identification and provide valuable information to solve and maybe even prevent crimes with explosives!

Prevention Crime Criminal Investigation Evidence

Forensic Reverse Engineering

Misuse of fireworks

Illegal use and trade of professional fireworks

→ Many incidents involve powerful flash bangers (Cobra 6)

Irresponsible and risky adolescent behavior

Criminal activities

Terrorist threats

Misuse of fireworks

Illegal use and trade of professional fireworks

→ Many incidents involve powerful flash bangers (Cobra 6)

Criminal activities

Terrorist threats

From identification to individualisation

Can we differentiate between different batches of explosives?

Can we link explosive materials from crime scenes and suspects?

Cobra 6 sample collection

Cobra 6 (2016): 22000 items confiscated

1800 items collected

200 items disassembled

Cobra 6 2G

Cobra 6 imitation

Cobra 6

Cobra 6 2G

Cobra 6 imitation

Cobra 6

Visual • examination

Cobra 6 2G

Cobra 6 imitation

Cobra 6

Visual • examination

Visual • examination

Laser Ablation – Inductively Coupled Plasma – Mass Spectrometry (LA-ICP-MS)

X-ray fluorescence (XRF)

Isotope analysis of plastic caps

One slide on isotopes

Natural abundance stable isotopes

Stable Atoms Carbon-12 Carbon-13 Carbon-14 Car

Ratio (R)=
$$\frac{\text{abundance of the heavy isotope}}{\text{abundance of the light isotope}}$$

Definition of Isotopes

Atoms of the same element that contain an equal number of protons, but differ in their number of neutrons

Isotopic composition of substance: Isotope ratios

- \rightarrow e.g. ²H/¹H, ¹³C/¹²C, ¹⁸O/¹⁶O, ¹⁵N/¹⁴N
- → Relative variations related to a reference scale
- → Expressed in ‰

From identification to individualisation

Can we provide tactical information about production and origin of explosives?

Can we prevent an attack with explosives?

Homemade explosives (HME)

TATP

Tien jaar gevangenisstraf voor afpersing Jumbo supermarkten

10 year sentence for extortion of Jumbo Supermarket

Homemade explosives (HME)

'Explosie in flat Groningen veroorzaakt door springstof TATP'

'Explosion in Groningen apartment caused by explosive TATP'

TATP

We found an intact IED made of TATP at crime-scene.

We found acetone at the suspect's place.

Can we link these items?

TATP

2005 London 2016 Brussels

We found an intact IED made of TATP at crime-scene.

We found acetone at the suspect's place.

Can we link these items?

Erythritol Nitric Acid

Erythritol Tetranitrate (ETN)

Relatively stable explosive

Easy synthesis method

Precursors readily available

Parameters

Synthesis route
Time
Temperature
Concentrations
Nitrate salt
Sulfuric acid
Wash step
Recrystallization solvent

Can we determine raw material use and synthesis conditions from a crime scene ETN sample without any reference material?

Washing ETN product

Recrystallization "recry

ETN "recrystallized product"

Parameters

Synthesis route Time Temperature Concentrations Nitrate salt Sulfuric acid Wash step Recrystallization solvent

Intact vs. Postexplosive traces

ETN "recrystallized product"

-19

-19 -18 -17 -16 -15 -14 -13 -12 -11 $\delta^{13}C$ (%) Erythritol precursor -40

-40 -30 -20 -10 0 10 20 30 40 50

δ15N (‰) Nitrate precursor

PhD Defence – September 2nd 2020

Forensic Science International 307 (2020) 110102

Contents lists available at ScienceDirect

chromatography-mass spectrometry analysis of partially nitrated

Karlijn Bezemer^{a,b,e}, Lindsay McLennan^c, Lara van Duin^a, Chris-Jan Kuijpers^b, Mattijs Koeberg^b, Jos van den Elshout^d, Antoine van der Heijden^d, Taylor Busby^c,

Alexander Yevdokimov^c, Peter Schoenmakers^a, James Smith^c, Jimmie Oxlev^c.

erythritol impurities

Arian van Astena,e

journal homepage: www.elsevier.com/locate/forsciint

journal homepage: www.elsevier.com/locate/forc

Forensic Chemistry 16 (2019) 100187

Karliin D.B. Bezemer^{a,b,*}, Lara V.A. van Duin^a, Carlos Martín-Alberca^b, Govert W. Somsen^c, Peter J. Schoenmakers^a, Rob Haselberg^c, Arian C. van Asten^{a,d}

Forensic Science International 313 (2020) 110344

Contents lists available at ScienceDirect Forensic Science International

journal homepage: www.elsevier.com/locate/forsciint

Chemical attribution of the homemade explosive ETN - Part II: Isotope ratio mass spectrometry analysis of ETN and its precursors Karlijn Bezemera, b. a. Lindsay McLennanc, Rosanne Hesselsa, Jorien Schoorld,

J Forensic Sci, September 2016, Vol. 61, No. 5 doi: 10.1111/1556-4029.13135

PAPER

CRIMINALISTICS

Chris A. van Driel, *Ph.D.; Cornelia Biaga, *Ph.D.; Jildert Bruinsma, *B.Sc.; and Arian C. van Asten, 13-5 Ph.D. Karlijn D. B. Bezemer, 1,2,3 M.Sc.; Mattijs Koeberg, 1 Ph.D.; Antoine E. D. M. van der Heijden, 2,4 Ph.D.;

The Potential of Isotope Ratio Mass Spectrometry (IRMS) and Gas Chromatography-IRMS Analysis of Triacetone Triperoxide in Forensic Explosives Investigations

Forensic Science International Volume 290, September 2018, Pages 327-335

Multicomponent characterization and differentiation of flash bangers — Part I: Sample collection and visual examination

Karlijn Bezemer ^{a, b} A 🖾, Rikus Woortmeijer ^b, Mattijs Koeberg ^b, Peter Schoenmakers ^a, Arian van Asten ^{a, b, c}

Forensic Science International 290 (2018) 336-348

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/forsciint

Multicomponent characterization and differentiation of flash bangers — Part II: Elemental profiling of plastic caps

Karlijn Bezemer^{a,b,*}, Rikus Woortmeijer^b, Mattijs Koeberg^b, Wim Wiarda^b, Peter Schoenmakers^a, Arian van Asten^a

Forensic Science International Volume 308, March 2020, 110160

Emerging techniques for the detection of pyrotechnic residues from seized postal packages containing fireworks

Karlijn D.B. Bezemer ^{a, b} A ≅, Thomas P. Forbes ^c, Annemieke W.C. Hulsbergen ^b, Jennifer Verkouteren ^c, Shannon T. Krauss C. Mattiis Koeberg D. Peter I. Schoenmakers C. Greg Gillen C. Arian C. van Asten A. d

Thank you!

THE UNIVERSITY OF RHODE ISLAND

National Institute of Standards and Technology U.S. Department of Commerce

Crossing Forensic Borders
CLHC kick-off event
2 December 2020

Going beyond detection and identification in forensic explosives investigations

Karlijn Bezemer k.bezemer@nfi.nl