

University of Amsterdam

FORENSIC RESEARCH PROJECT

RESEARCH PROJECT

Title	: Estimating the deposition height of passive bloodstains
Keywords	: bloodstain pattern analysis
Forensic Expertise Area	: bloodstain pattern analysis
Department	: Human Biological Traces/Front Office
Institute/Company	: Netherlands Forensic Institute
City	: The Hague
Country	: Netherlands
Supervisor	: Karla de Bruin/Gerda Edelman
Email address	: k.de.bruin@nfi.minvenj.nl
Telephone number	: +31-070-88866666
UVA Examiner	: Daniel Bonn
UVA Coordinator	:

SHORT DESCRIPTION

Bloodstain pattern analysis (BPA) is one of the few forensic disciplines that are able to give a statement about what has happened at a crime scene instead of who was present at a crime scene. In order to make a reconstruction of the crime, the origin of individual bloodstains is important. At the University of Amsterdam, a method was developed to determine the flight path of each individual stain, based on its surface area and the volume [Laan 2014]. The method was validated for so-called impact patterns [Laan2015]. In this project, the method will be extended to passive bloodstains to estimate the fall height of the droplet.

REFERENCES

Laan et al. 2014 Maximum diameter of impacting liquid droplets. Phys Rev Applied 2 044018

Laan et al. 2015 Bloodstain Pattern Analysis: implementation of a fluid dynamic model for position determination of victims. Sci Rep 5:11461